Improved cell-penetrating peptide–PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle

نویسندگان

  • Gabriela D. Ivanova
  • Andrey Arzumanov
  • Rachida Abes
  • Haifang Yin
  • Matthew J. A. Wood
  • Bernard Lebleu
  • Michael J. Gait
چکیده

Steric blocking peptide nucleic acid (PNA) oligonucleotides have been used increasingly for redirecting RNA splicing particularly in therapeutic applications such as Duchenne muscular dystrophy (DMD). Covalent attachment of a cell-penetrating peptide helps to improve cell delivery of PNA. We have used a HeLa pLuc705 cell splicing redirection assay to develop a series of PNA internalization peptides (Pip) conjugated to an 18-mer PNA705 model oligonucleotide with higher activity compared to a PNA705 conjugate with a leading cell-penetrating peptide being developed for therapeutic use, (R-Ahx-R)(4). We show that Pip-PNA705 conjugates are internalized in HeLa cells by an energy-dependent mechanism and that the predominant pathway of cell uptake of biologically active conjugate seems to be via clathrin-dependent endocytosis. In a mouse model of DMD, serum-stabilized Pip2a or Pip2b peptides conjugated to a 20-mer PNA (PNADMD) targeting the exon 23 mutation in the dystrophin gene showed strong exon-skipping activity in differentiated mdx mouse myotubes in culture in the absence of an added transfection agent at concentrations where naked PNADMD was inactive. Injection of Pip2a-PNADMD or Pip2b-PNADMD into the tibealis anterior muscles of mdx mice resulted in approximately 3-fold higher numbers of dystrophin-positive fibres compared to naked PNADMD or (R-Ahx-R)(4)-PNADMD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Splice-Redirecting Activity of Branched, Arginine-Rich Peptide Dendrimer Conjugates of Peptide Nucleic Acid Oligonucleotides

Arginine-rich cell-penetrating peptides have found excellent utility in cell and in vivo models for enhancement of delivery of attached charge-neutral PNA or PMO oligonucleotides. We report the synthesis of dendrimeric peptides containing 2- or 4-branched arms each having one or more R-Ahx-R motifs and their disulfide conjugation to a PNA705 splice-redirecting oligonucleotide. Conjugates were a...

متن کامل

PNA-mediated modulation and redirection of Her-2 pre-mRNA splicing: specific skipping of erbB-2 exon 19 coding for the ATP catalytic domain.

The Her-2 receptor coded for by the proto-oncogenic erbB-2 gene is a clinically validated target for treatment of a significant genetic subclass of breast cancers, and Her-2 is also overexpressed or mutated in a range of other cancers. In an approach to exploit antisense mediated splicing interference as a means of manipulating erbB-2 expression in a therapeutically relevant fashion, we have st...

متن کامل

Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chim...

متن کامل

Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice.

Cell-penetrating peptides (CPPs), containing arginine (R), 6-aminohexanoic acid (X), and/or beta-alanine (B) conjugated to phosphorodiamidate morpholino oligomers (PMOs), enhance their delivery in cell culture. In this study, the potency, functional biodistribution, and toxicity of these conjugates were evaluated in vivo, in EGFP-654 transgenic mice that ubiquitously express the aberrantly spli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008